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Abstract

Bachelor of Engineering (Hons.)

Tackling Drift in Neural Responses in the Spinomotor Pathway

by Hrithik Nambiar

This thesis examines the problem of neural drift and the possibility of using meta-learning

to build an adaptive algorithm to tackle this drift. Spinal Cord Injury(SCI) is a debilitating

condition that can result in a wide range of physical and neurological impairments. Recent

research has identified Epidural Electrical Stimulation(EES) as a promising approach for restoring

motion in SCI patients. This is preliminary work as a part of our goal to build an efficient and

adaptive neural network-based solution for identifying EES parameters which initiate the desired

motion in patients with SCI. Reliability and Efficiency are key to adopting such a solution for

clinical purposes. Hence, the neural network should be able to adapt to neural drift to maintain

its performance using minimal trials for re-calibration. The method followed includes data

collected using experiments spanning six days in which a sheep was surgically implanted with a

multi-electrode array through which electrical stimulations were applied. The activity of the

sheep’s hind legs was collected using surface electromyography (EMG) sensors. We compare

the performance of reliable baselines and our adaptive algorithms on a held-out set from the

sixth day of the experiments. The goal of the adaptive algorithm is to minimize the trials used

from the sixth day for adaptation while maintaining the prediction performance. The results

indicate that pre-training on the data collected from the first five days of the experiments can

aid performance to perform at par with the baseline by using only half the number of trials.

Although the results indicate that rudimentary meta-learning algorithms such as Model-Agnostic

Meta-Learning(MAML) and First-Order Model-Agnostic Meta-Learning(FOMAML) fail to

outperform baselines, we find more recent meta-learning algorithms promising for alleviating the

challenges identified in this thesis.
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Chapter 1

Introduction

Spinal Cord Injury (SCI) is an impairing condition that can result in a wide range of physical and

neurological impairments. One reliable approach for restoring motor function in patients with

SCI is using Epidural Electrical Stimulation (EES). EES involves applying electrical stimulations

to the spinal cord using an electrode array implanted in the spinal cord. Research has proven

that these electrical stimulations help activate motor neurons and muscles, allowing for several

voluntary movements including complex activities such as cycling or swimming for a long period

after SCI. Recent research[14] has shown that it is possible to leverage modern deep neural

networks to optimize the large neurostimulation parameter space for predicting motor outputs.

This demonstrates the ability of these networks to approximate spinal sensorimotor computations.

While this study has shown promising results, this thesis identifies and attempts to remediate a

critical challenge in implementing EES as a solution for SCI patients: the failure of machine

learning models due to neural drift.

Although deep learning models are good approximators of spinal sensorimotor computations, they

are susceptible to changes in neural activity over time, leading to their declining performance.

We refer to this change over time in neural activity as neural drift. Various reasons can be

attributed to the observed drift in neural activity collected from the implanted electrodes such as

tissue growth around the electrode array implants or external factors such as electrode position

and environment. Neural drift poses a significant obstacle to the practical implementation of a

neural network-based EES for SCI patients. It can require frequent re-calibration and retraining

of the deep learning models, reducing their usability and practicality for clinical purposes.

To address the problem of neural drift in deep neural networks for EES, it is imperative to develop

adaptive algorithms to help the neural network adapt to the changing neural activity efficiently.

One such promising direction for adaptation to neural drift is Meta-Learning, which refers to

the idea of training a network to learn how to learn. In this training regime, the model learns

from a distribution of tasks, rather than a specific task, and uses this knowledge to generalise to

1



Chapter 1. Introduction 2

a new task efficiently. Meta-learning has shown tremendous success and applicability in domains

such as Images, Language and Robotics. We introduce meta-learning to the realm of neural

engineering as an efficient solution for the neural drift observed in biological neural data.

Figure 1.1: Goal: To build an adaptive learning algorithm to help tackle neural drift and
maintain model performance by using minimal training trials. (a) EMG and kinematics responses
to varying EES applied to the sheep’s spine are collected. A neural network can be trained to
predict them using the EES parameters. (b) Data is collected over 6 consecutive days. (c) The
forward model which predicts the power of EMG responses fails to maintain its performance

when tested on a day different from when it was trained on.

1.1 Project Goals

In this work, we analyse the data collected from a sheep surgically implanted with two 24-

contact EES electrode arrays placed onto the spinal cord[3]. Experiments involved different

stimulation conditions repeated multiple times and the resulting muscle activity was measured

via surface electromyography(EMG) from four bilateral lower extremity muscles collected over 6

consecutive days. This data is used to analyse the presence of drift in the surface EMG that was

recorded post-neural stimulation and further test adaptive algorithms as a solution. Further,

the synchronized video recording of the hind leg of the sheep was obtained using three fixed

cameras. This data was utilised along with state-of-the-art Computer Vision algorithms to

extract the Kinematics of the sheep as a response to the stimulation. This thesis also recognises
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the drift observed in kinematics as a response across days with similar experimental conditions

and attempts to remediate the same using meta-learning algorithms.

1.2 Structure of the report

Chapter 1 is the introductory chapter, where the motivation behind the project and the project

goals and contributions are presented. Chapter 2 explores and discusses previous literature

available on the concept drift and neural drift, solutions to mitigating the drift seen in neural

data and state-of-the-art meta-learning algorithms to motivate the readers on their potential

usability for this project. Chapter 3 introduces the dataset collected for this project, the analysis

of the dataset, the meta-learning approach suggested and the other baselines. Chapter 4 presents,

the results of the analysis and the method will then be evaluated through a series of experiments

with other baselines. The obtained results are compared and discussed in this chapter. Finally,

the last chapter provides a general summary outlining the project’s key takeaways and identifies

improvement points for immediate future work.



Chapter 2

Related Works

2.1 Concept Drift

Concept drift and data drift are two major challenges in machine learning, especially while

deploying trained models for real-world applications. Concept drift refers to the changes in

the relationship between the input and target variables over time and data drift refers to the

changes in the input distribution. These changes can lead to degradation in the performance

of machine learning models since it now encounters data that is different from the data that

it was trained on. This makes them less accurate and less reliable. Recent years have seen a

growing interest in developing methods to detect concept and data drift especially for deployed

machine learning models where it is important to maintain their performance[21]. The literature

contains various methods to detect drift by calculating the distance between the training and

test distributions, prediction errors on the new test data and the changes in the accuracy of the

deployed model. However, the most critical challenge is to adapt to these changes post-detection.

Saadallah and Morik[28] proposed a meta-learning-based approach to learn the weights of

an ensemble model to adapt to concept drift. Diez-Olivan et al[8] propose the use of kernel

density estimation techniques for generating synthetic data for finetuning the model to adapt to

concept drift. DAREM[6] proposed an algorithm based on incremental learning to update the

model parameters for handling the drift. It alleviates the problem associated with catastrophic

forgetting by including both the old and new data. To avoid retaining old data, Fekri et al[11]

introduce a tree-structured Parzen estimator or optimising hyperparameters and also the weights

of a recurrent neural network for concept drift adaptation.

4



Chapter 2. Related Works 5

2.2 Neural Drift

Research has revealed that neural activation associated with motor functions, sensation and

cognition undergoes changes over days and weeks, which we refer to as neural drift or represen-

tational drift. Studies have revealed continual reorganisation of neuronal activity pertaining

to certain tasks even when the task has been fully learnt[26]. Driscoll et al[10] designed a

sensorimotor task involving a mouse which was trained to navigate a maze set in a virtual

environment. It was found that the neural activity in the posterior parietal cortex (PPC) of the

mice which was required to solve the task, was not stable across days and weeks. Similarly drift

in neural activity has been observed in the motor cortex[15] during sensorimotor tasks.

Representational drift was previously seen as a passive process caused by noise, however, it can

also be influenced by ongoing learning. A small fraction of neurons exhibits discrete changes in

activation from one day to the next or over a shorter time interval. Hence, the correlation of

neural activity with observed behavioural and sensorimotor variables usually remains stable over

shorter intervals. However, over the course of a day or weeks, these changes accumulate to a

higher level such that the changes in correlation between the neural responses and the observed

variables change[9]. In typical experiments, the neural activity associated with a specific task is

analysed, but the same population of neurons could be associated with other aspects, such as

the subject learning new experiences through the course of the experiment. Even in the absence

of learning, studies have shown that continual reorganisation in various parts of the brain for

encoding information more efficiently.

A part of the literature[22] also presents theoretical works that highlight the computational

benefits of representational drift and also how it supports robust actions, perceptions and

memories. One challenge that could arise due to the changing activity could be the decoding

ability of the nervous system. However, theoretical work[27] has also shown that drift can be

compensated by synaptic plasticity which requires only small weight changes over days enabling

animals to maintain a stable readout of information by a downstream network. Similarly, it

is vital to implement adaptive mechanisms in artificial neural networks that have been widely

deployed for decoding neural activity for various tasks to handle drift making them robust and

reliable.

2.3 Adaptive Algorithms for neural decoders

Neural drift has been a big challenge in implementing closed-loop solutions for neural decoding

for a decade. There have been interesting Adaptive learning-based neural decoding systems that

have been introduced in the literature. Dantas et al[5] presented a semi-supervised adaptive

learning algorithm for movement intent decoding using electromyography (EMG) signals. They
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utilise a movement model which recognizes the recently decoded movement patterns and use this

information to retrain the decoder in a semi-supervised manner. Tafazoli et al[32] recognised

the need for an adaptive-closed-loop stimulation system (ACLS) to control the drifting pattern

activity of a population of neurons. ACLS uses a model-free learning algorithm which involves a

stochastic learning algorithm that helps reduce the error between the evoked and target neural

responses. Chiang et al [4] suggest using error-related potentials to maintain the performance

of Brain-Computer-Interface frameworks using Electroencephalography (EEG), to make them

robust to drifts. Error potentials are calculated shortly after the output of the classifier is

displayed to the user by using the EEG responses of the user in this closed-loop framework.

There are multiple works[16][7] which suggest using the lo dimensional latent manifold associated

with neural population for stabilising BCI. Degenhart et al. introduced a stabilized BCI which

utilizes the low-level structure present in neural activity to enable accurate control even in the

presence of drift or instabilities. This work is based on the recent findings that point to the

evidence that neural population activity tends to lie in a low-dimensional space termed the

neural manifold. This work introduces a manifold-based stabilizer based on factor analysis

whose parameters are updated across time to account for the instabilities and a fixed decoder. A

recent work by Bonizatto et al[2] presents a promising approach using Gaussian-Process (GP)

based Bayesian-Optimisation (BO) which can control stimulation parameters for motor cortex

and spinal cord outputs. They show that it can also deal with challenges associated with drift

by optimizing stimulation using limited data and purely online. There have not been enough

works that suggest the application of meta-learning for tackling neural drift. A work by Li et

al[19] presents a meta-learning-based approach for EEG motor imagery decoding to assist a BCI

decoder to generalise between users and recording sessions.

2.4 Meta-Learning

Meta-Learning is a learning paradigm in machine learning which aims to improve the generali-

sation of models such that they are capable of adapting to new tasks and environments that

are unseen during the training phase. It is often associated with the idea of “learning to learn”.

In this paradigm, the network is trained over a distribution of tasks and its performance is

measured on a new unseen task. Over the years, there has been a lot of interesting literature in

this area. We can broadly classify these works into three categories - metric-based, model-based

and optimisation-based meta-learning.

2.4.1 Metric-Based

The main idea behind this type of learning method is to learn a metric space where the embedding

of samples from similar tasks or environments is closer to each other. The idea is similar to
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nearest neighbour algorithms. A metric function is learnt to compare these tasks. Once this has

been learned, it can be used to quickly adapt to new tasks by finding tasks similar to the new

task. Koch et al[18] proposed using Siamese neural networks for one-shot image classification.

Siamese neural networks consist of two neural networks which are jointly trained using a function

so that it learns if two images belong to the same class. During the test time, an image is

assigned the label associated with the image from the support set that is closest to it in the

metric space. Some other notable works are matching[33], prototypical[30], and relation neural

networks[31].

2.4.2 Model-Based

This section reviews works that present models designed for learning new tasks efficiently and

rapidly. Memory Augmented Neural Networks (MANN)[29] introduced by Santoro et al uses

an external memory which can be accessed and modified during both training and testing time

to quickly adapt to new tasks. Munkhdalai et al proposed MetaNets[24] which consists of two

learners, namely the meta and base learners. The base learner attempts to solve specific tasks

and the meta learner operates across tasks and rapidly changes the model weights. Conditional

Neural Processes(CNP)[13] was proposed to combine the advantages of deep neural networks

and Gaussian processes for allowing fast inference by taking advantage of prior knowledge.

2.4.3 Optimisation-Based

This section reviews optimisation-based meta-learning which treats meta-learning as an opti-

misation problem, which can then be tackled using gradient descent. Model Agnostic Meta-

Learning[12] aims to learn model parameters such that it can adapt to new unseen tasks using

only a few of steps gradient descent and using only a few examples. Multiple works were built on

top of MAML for improving its performance. Nichol et al[25] suggested improving this algorithm

by omitting the second derivatives involved in the MAML. They also introduced a new algorithm

called Reptile which involves repeatedly sampling a task and moving the initialisation towards

the trained weights for that task. Alpha MAML[1] introduced an adaptive algorithm to adjust

the hyperparameters involved in the original algorithm and thereby improving its performance.

Li et al[20] proposed Meta SGD which is a meta-learner which can initialise and adapt to any

differential learner in just one step.



Chapter 3

Methodology and Experiments

3.1 Dataset

This dataset has been collected through experiments spanning 6 days (Monday to Friday from

week 1 and Monday from week 2) and to test the presence of inter-day drift and to facilitate

an attempt to build adaptive algorithms for building a reliable BMI. A fully conscious sheep

surgically implanted with EES electrode arrays was hanged in the air using a sling until a

separation between the hooves and the ground was observed. The electrodes were implanted in

the dorsal aspect of the epidural space of the lumbosacral spinal cord, spanning approximately

the L4–L6 vertebral bodies[3]. The sheep was allowed recovery time before conducting the

experiments.

3.1.1 Data Acquisition

Muscle activation and the kinematics (trajectories of hip, knee and toes of the hindlegs of the

sheep) as a response to the electrical stimulation were collected. Muscle activation was collected

using the surface EMG of the target muscles. The target muscles included lower extremity

muscles on both the hindlegs of the sheep: peroneus longus (PL), biceps femoris (BF), gracilis

(GR) and gastrocnemius (GA). The target muscles are selected after considering the positive

experimental results previously obtained by the team. BF is a proximal muscle responsible for

hock flexion and hip extension, and GR is a proximal muscle responsible for hip abduction, hock

flexion, and hock internal rotation. PL is a distal muscle responsible for hock flexion and GA is

a distal muscle responsible for hock extension.[14] The EMG sensors were placed after careful

preparation of the attachment sites.

Randomised electrical stimulations consisting of 5 unique amplitudes (300µA, 600µA, 900µA,

1200µA, 1500µA) and 4 unique frequencies (10Hz, 25Hz, 50Hz, 100Hz) were delivered through

8
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36 unique electrodes implanted in the spinal cord. On day 6 the experiment involved 5 unique

amplitudes with the maximum being 1800µA. Electrical stimulation pulses of 300ms were

delivered every 1 second of the experiment. The EMG signals collected were bandpass filtered

and digitized during data collection. The EMG signals from 500ms before stimulation to 500ms

were collected for each trial involving a specific EES parameter (Amplitude, Frequency and

Electrode). Experiments involving a specific EES parameter set were repeated 3-5 times.

Additionally, the synchronised video recording of the hind legs of the sheep was also collected

during the experiment for analysing the kinematics of the motion elicited by the stimulations.

The video was collected using 3 fixed cameras to make the recordings consistent across the 6

days of the experiment. The kinematics of the hindlegs of the sheep was extracted from the

video using state-of-art computer vision techniques as highlighted in section 3.1.2.

Figure 3.1: (a) Multi-array electrode array implanted in the spinal cord of a sheep. (b) EMG
sensors are attached to 4 muscles of each hindleg. (c) The surface EMG of these muscles in

response to EES is collected.

3.1.2 Data Processing

EES for each trial consists of three parameters, the amplitude (A), the frequency (F) and the

electrode (E). For using this as the input for neural networks, the EES was summarised as θ =

[A,F,E]; where E is the one-hot encoding of the electrode number e [that is, with number 1 at
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the index e and 0 elsewhere]. This makes θ a vector of dimension 38 (since we have 36 electrodes

used to create the dataset).

The EMG waveforms were collected from -500ms prior to the stimulation till 500ms after the

stimulation. EMG was filtered using a high pass filter to 100Hz to prevent any noise caused

by the movement of the artefacts used in the experiment. The EMG responses collected are

pre-processed by removing outliers and unreliable samples as described by previous research

by Govindarajan et al[14]. For summarization of the EMG responses to a lower dimension for

the ease of evaluating a neural network-based solution, we adhere to the guidelines set by prior

research works. We consider the average power of the EMG response elicited in the muscle from

100ms to 400ms post-stimulation. The average power is obtained by averaging the absolute

values of associated EMG responses in this interval. We chose this interval since it is a true

representation of the response elicited by the stimulation.

Using the video recordings collected from the three cameras in the experiments, the kinematics

of the thigh, knee and toe from the sheep’s hind legs were extracted using a state-of-the-art

pose estimation library called DeepLabCut[23]. Further processing was performed to extract

annotations with accuracy at par with human annotators.

3.2 EMG Analysis

EMG responses to electrical stimulations were analysed to check if there was an inter-day drift.

To determine this, the inter-day and intra-day changes in the average power of the EMG responses

as well as the raw EMG responses in different muscles to different EES were compared. One

of the major goals of this analysis was to determine if certain kinds of electrical stimulation

resulted in more inter-day drift when the same experiment was conducted across days.

3.2.1 Drift in the EMG responses

It was observed that there was an inter-day drift in the power of the EMG responses from

100-400ms post the stimulations, given the same stimulation conditions. This was considerably

more than the changes observed during the multiple trials for the same stimulation parameters

conducted on a single day (inter-day drift). This observation motivates us to ponder if a forward

model that predicts the average power of EMG response trained on a single day would yield

results at par with the day that it was trained on when tested on other days.

To better visualize the magnitude of the drift in the response after stimulation, it is often better

to project the data to a lower dimension. The principal component analysis (PCA) is a great

tool for this. We plot the data projected along the first two principal components. For similar
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EES parameters, clusters of trials from each day separated from each other were observed. This

verifies the presence of inter-day drift.

Figure 3.2: (a)The EMG responses from 0-400ms post EES are similar in the 4 trials involving
the same EES parameters. (b)EMG responses are different for the same EES parameters
when applied on different days (inter-day drift). We refer to this as neural drift. (c)Drift is
more evident when visualised in a lower dimension using Principle Component Analysis(PCA).

Clusters involving trials from the same day are away from clusters from other days.

3.2.2 Forward model

In this work, a multi-layer perceptron was used as the forward model for the prediction of EMG

responses using EES parameters. This model was trained end-to-end using stochastic gradient

descent employed in the Adam optimizer[17]. The network is implemented as three modules, the

embedding, the core and the readout module. The network takes as its input the parameterized

EES θ = [A, F, E]; where E is the one-hot encoding of the electrode number e [that is, with

number 1 at the index e and 0 elsewhere]. This makes θ a vector of dimension 38 (since we

have 36 electrodes used to create the dataset). This input is then projected onto a feature space

which is then fed into the core module. The readout module uses these processed features to

predict the summarized EMG responses (power of responses). The dimensions of the embedding

and the core modules were 32 and 256 respectively, and the readout layer was of 8 dimensions

for predicting the EMG responses in 8 target muscles (4 in each hindleg). The network applies

ReLU activation function to the output of each layer. This architecture was inspired by the

architecture used in the earlier research work[14]; hence, no further tuning of hyperparameters

involved in the architecture was performed. We also use a Dropout layer with 50% dropout
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probability before the readout module to avoid overfitting and for regularization. The network

is trained by minimising the L1 loss (using the mean of the L1 loss across target muscles) in the

predicted and the true EMG response summaries.

The optimization algorithm used to train the model was the Adam optimizer[17] with a learning

rate of 0.001 and with weight decay of 5×10−4 for regularisation.

The train-test split utilised is similar to the approach proposed by Govindarajan et al.[14], refer

to 3.2.4 for more details. For all the results we used a holdout set consisting of 900µA amplitude

and 50Hz frequency. Hence 40% of the available trials from each day are used to evaluate the

model trained on the remaining 60% trials on the day. This particular amplitude and frequency

were selected for the held-out set because this stimulation is not strong enough to saturate the

responses and not too weak to elicit weak EMG responses.

3.2.3 Failure of forward model

The analysis of the EMG responses revealed an inter-day drift in the responses for similar

stimulation conditions. It is important to study if this drift affects the performance of a model

trained on a particular day when tested on other days. We train the forward on each day with

the same held-out set (900µA, 50Hz) and compare its performance on the held-out sets (900µA,

50Hz) from the other 5 days of the experiment. We observed the L1 error on the held-out set is

considerably higher (almost 2 times the error on a training day) when tested on the other days.

This is the motivation behind developing adaptive algorithms as discussed in the remaining part

of this report.

3.2.4 Train-Test Split

We use a similar train-test split as introduced in previous work[14]. This scheme has been

crafted to test the generalisation ability of our forward model as well as our adaptive algorithms.

We want to test both (a)hard generalisation: The model’s ability to interpolate to completely

new parameters and (b) soft generalisation: the model’s ability to interpolate along one unseen

parameter. For building a forward model specific to a day, we can utilise all the trials from that

day except the test set from the day. This is our baseline. The aim of this project is to build a

adaptive algorithm, which can perform at par or even outperform this baseline forward model

by using a smaller number of trials from the same day.

For building and testing our adaptive algorithms, we utilise all trials from day 1 to day 5

(which includes experiments from the same week) to train the adaptive algorithm. We use two

fine-tuning or adaptation strategies involving data from day 6 (the test day in general) which we

name as Adaptation 1 and 2 respectively. Adapt 1 involves 252 trials, which are sampled from
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Figure 3.3: The test set and the adaptation sets which were used to test the fine-tuning
ability of adaptive algorithms. The red box highlights the part of the test set used to test the

hard-generalisation ability of the model.

any one frequency or one amplitude as represented in the figure. Adaptation 2 involves only

36 trials, which are sampled from a unique frequency and a unique amplitude. We would like

to develop algorithms which can perform as well as the model trained specifically for day 6 by

using a trained adaptive model which is fine-tuned to day 6 using either of these adaptation sets

designed.

3.3 Meta-Learning

A forward model trained to predict EMG responses using experimental data from a day fails

to maintain the same level of performance when tested on data from the following days due to

the presence of neural drift. This implies that to maintain the same level of performance as the

training day on any other day, the model would require to be retrained using data collected

from that particular day. However, it is difficult and not practical to conduct enough trials every

day for retraining. For this reason, we would like to implement an adaptive learning mechanism

which would help to reconfigure the parameters of the forward model using only a few trials

from each day to maintain a consistent model performance across days. In this work, we explore

a meta-learning-based approach for adapting to drift.

Meta-learning is a training paradigm that is different from contemporary machine learning

algorithms which are trained from scratch to optimise the performance on a specific task. Meta-

Learning targets ‘learning-to-learn’ or in other words attempting to learn the learning algorithm

itself. It does this by training itself over multiple learning episodes using a distribution of related

tasks and uses this to improve its future learning processes. In the context of our research

problem, we view the data collected from the first five days as different tasks. The assumption is

that these “tasks” are related and thereby the optimal parameters would be closer to each other.
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Over multiple learning episodes, it is expected that the model learns to converge to a point in

the parameter space, from where it is easy to adapt to the drifted data from a new day using

only a smaller number of samples or lesser gradient descents.

3.3.1 Model-Agnostic Meta-Learning

Just like other commonly used meta-learning algorithms, the idea behind MAML[12] is to directly

optimize for the initial representation such that it can be effectively fine-tuned using only a few

labelled samples. MAML is trained on a wide variety of tasks (data collected from different days

in the context of this project) so that it can learn the best representation. This representation is

trained such that it can quickly adapt to a new task via a few gradient descent steps efficiently

in a few-shot fashion. The intuition behind using this approach in this project for tackling

the challenge of neural drift is that there must be internal features of the data that could be

transferred across different tasks. In effect, through the training procedure, we aim to find model

parameters such that small changes in these parameters would yield large improvements in the

loss function on different tasks when steps are taken along the gradient of that loss. Since this is

a gradient-based approach, we assume that the loss function is smooth.

Algorithm MAML Algorithm for tackling neural drift

1: Require: p(T ): Set of data from all training days
2: Require: Iterations, Adaptation Steps, Inner learning rate(α), Meta-learning rate(β)
3: for Iterations do
4: Set of tasks Ti ∼ p(T )
5: for each Ti do
6: Sample Train-Set Traini and Held-out set Testi from Ti
7: for Adaptation steps do
8: Evaluate ∇θLTi (fθ) with respect to Traini

9: Compute adapted parameters with gradient descent: θ′i = θ − α∇θLTi (fθ)
10: Compute the L1 evaluation loss Evali using Testi
11: end for
12: end for
13: Update θ ← θ − β∇θ

∑
Ti∼p(T )EvalTi

14: end for

For applying MAML to this project, we view the data collected from each day as the different

tasks belonging to the same task distribution T. The training task set consists of data from

the first 5 days of the experimental data. Our aim by using meta-learning is to learn the best

initialization θ, such that it becomes easy for fine-tuning. We report the results on the held-out

set as mentioned in 3.2.4, that is, (900µA, 50Hz) from Day 6. This is done so that we can

compare its performance with the forward model introduced in section 3.2.2. We compute the

task-specific parameters θ’ for data from each day using gradient descent for multiple epochs

(adaptation steps) with a learning rate α. After the task-specific model has been trained, we
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compute the loss of this model on the held-out set from that specific day to yield Evali. This

loss is aggregated and averaged across all tasks (5 days) for performing the meta update.

Figure 3.4: (a) A pictorial representation of the MAML algorithm to tackle neural drift. (b)
The algorithm optimizes for the model parameter θ. Through meta-update the initialisation θ*

which is good for fine-tuning is learnt.

The meta-update is where the parameters of the model are changed. We perform meta-

optimisation using the Adam Optimizer[17] with a different learning rate β. This is performed

for multiple iterations, which we refer to as learning episodes. The loss used is the mean L1

error.

3.3.2 First-Order Model-Agnostic Meta-Learning

The meta-optimization involved in MAML involves a second-order derivative for performing

meta-update. In contemporary applications, MAML is used in a few-shot setting where only

a few examples are available for the tasks involved in the training phase. However, we have

sufficient samples available for days from 1 to 5, which we would like to utilize. Hence, we

use a large number of adaptation steps so that we learn very good task-specific learners. This

combined with the need for calculating the second derivative, makes the MAML algorithm very

slow for the meta-learning episodes to be increased in the quest for better results. First-order

MAML (FOMAML)[25] is a cheaper and simplified implementation of MAML which omits the

second derivatives.

3.4 Baselines

We compare the performance of MAML on the held-out dataset (900µA,50Hz) from day 6

with two baselines. The first is a forward model trained using all the training data from day 6
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(remaining trials except the trials in the held-out set). The second is a forward model trained

on all the trials collected from the experiments from day 1 to day 5. This can be viewed as

analogous to transfer learning or using pre-trained weights. The goal of this work is to build an

adaptive learning algorithm that can outperform or even be at par with the baselines using lesser

trials from day 6. Hence, we compare the performance of the pre-trained and MAML-based

models on their prediction ability on the held-out set after adaptation or fine-tuning using the

two adaptation strategies highlighted in figure 3.3.



Chapter 4

Results

4.1 Results

Results reported are the average L1 error (for the 8 muscles on both hindlegs of the sheep)

for the prediction of the power of EMG responses on a held-out set consisting of 324 trials

(900µA,50Hz) from Day 6. Days 1 to 5 in the dataset are from Monday to Friday, and Day 6

was Monday from the week after. For this reason, data from day 6 was used for testing the

adaptive algorithms (refer Table 4.1 and Table 4.2) since it is expected to have the maximum

drift. However, we make sure to perform cross-validation of these results by testing on each of

the 6 days whilst training on the remaining 5 days (Figure 4.1). We choose 900µA and 50Hz for

the held-out set since this stimulation does not belong to either extremity and hence is good to

test the interpolation and generalisation ability of the prediction model. The baselines for our

meta-learning algorithm are described in section 3.4. As introduced in section 3.2.4 our aim is

adaptation using a smaller number of trials and hence we test the performance by fine-tuning

using two types of finetuning datasets, namely, Adaptation 1 and 2.

4.1.1 Pre-training

This section will focus on the results obtained by pre-training on the trials conducted from Day

1 to Day 5. The L1 errors for an MLP trained on day 6 and the pre-trained model are shown in

Table 4.1. As expected, pre-training helps the model learn a suitable initialisation of the model

parameters. The pre-trained model is able to leverage some features from the data from the

earlier days to help it perform slightly better than a forward model trained only on trials from

day 6 (for 1000 epochs) by using the same number of trials (540 trials) to finetune its weights

(for 100 epochs). A pre-trained model is also able to perform almost at par (L1 error of 0.0423

compared to 0.0412) by using only half the number of trials (252 trials - Adaptation 1) from

17
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Model Training Data Finetuning Data
L1 Error

(On held-out set
from Day 6)

MLP
540 Trials from

Day 6
- 0.0412

Pre-Trained MLP
All Trials from
Day 1 to Day 5

- 0.0512
540 Trials from Day 6 0.0385

252 Trials (Adaptation 1)
from Day 6

0.0423

MAML
All Trials from
Day 1 to Day 5

252 Trials (Adaptation 1)
from Day 6

0.0469

First-Order MAML
All Trials from
Day 1 to Day 5

252 Trials (Adaptation 1)
from Day 6

0.0493

Table 4.1: Comparison of the performance of the baselines and the meta-learning algorithms
(after fine-tuning using Adaptation 1) set on the held-out set from Day 6.

day 6 for fine-tuning. However, it is not as accurate as the forward model for day 6 without

fine-tuning using trials from day 6. But it is to be noted that a pre-trained model performs

reasonably well on the held-out set from day 6 without using any data from the day.

4.1.2 Adaptation 1

In this section, we test the ability of adaptive algorithms, namely, MAML, FOMAML and

also the pre-trained model, to make predictions on the day 6 held out set by finetuning their

parameters using only 252 trials. It is to be noted that multiple Adaptation1 finetuning data

sets were tested using all combinations of frequency and amplitude. We observed that using the

Adaptation set involving 600µA and 50Hz yields the best result for this held-out set, which was

reported (refer Table 4.1). The results are evidence that pre-training performs better than both

MAML and First-Order MAML for this problem setting, this suggests that the initialisation

learnt by pre-training is more suitable for fine-tuning. However, we expected the contrary, since

pre-training does not guarantee an initialisation that is good for fine-tuning. However, MAML

and related algorithms directly optimise performance with respect to initialisation suitable for

fine-tuning.

4.1.3 Adaptation 2

For the pre-trained model, fine-tuning model parameters using the Adaptation2 set leads to

decreasing model performance, as compared to its initial parameters (refer Table 4.2). We

attribute this drop in performance to over-fitting. Since this adaptation set contains only 36

trials, the fine-tuning process does not guide this model to a generalized solution. However,

even though the L1 loss for adaptive models (MAML, FOMAML) trained using meta-learning
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Model Training Data Finetuning Data
L1 Error

(On held-out set
from Day 6)

MLP
540 Trials from

Day 6
- 0.0412

Pre-Trained MLP
All Trials from
Day 1 to Day 5

- 0.0512
36 Trials (Adaptation 2)

from Day 6
0.0762

MAML
All Trials from
Day 1 to Day 5

- 0.2315
36 Trials (Adaptation 2)

from Day 6
0.1023

First-Order MAML
All Trials from
Day 1 to Day 5

- 0.2153
36 Trials (Adaptation 2)

from Day 6
0.0893

Table 4.2: Comparison of the performance of the baselines and the meta-learning algorithms
(after fine-tuning using Adaptation 2) set on the held-out set from Day 6.

is higher, we see improvement by fine-tuning using this small adaptation set. This is because

meta-learning guides the model to learn initialization which is optimized for fine-tuning. However,

these methods do not perform at par or outperform the error by baseline MLP (0.0412). We

discuss possible reasons and improvements for this in the next section.

4.2 Summary and Limitations

Figure 4.1: The results are summarized after cross-validation. We cross-validate the results by
using different days from day 1 to 6 as the test day and by training the adaptive algorithms on
the remaining 5 days. We observe that the trends of the results are consistent with Table 4.1 &

Table 4.2 (results on Day 6) when tested every other day (Day 1 to Day 5).
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Pre-training aids model performance, and even performs at par with a model trained using all

trials from a day even with only half the number of trials. However, contrary to our expectation

meta-learning-based models (MAML, FOMAML) failed to outperform pre-training. However,

with this problem setting and this scale of loss, the difference is not very evident. We suggest

further experiments as future work, mainly extending this work for kinematics predictions, to

better understand the efficacy of these methods. It is interesting to note that fine-tuning using

the Adaption 2 strategy led to deteriorating model performance for the pre-trained model which

can be attributed to overfitting. However, they do help guide the model parameters to a better

solution from the initialisation set by meta-learning (for MAML, FOMAML). But it does not

outperform the baselines. The optimisation procedure for MAML involves computing double

derivatives, hence, it is often not ideal for problems where we need to perform a large number of

adaptation steps or gradient descent for learning the individual tasks. Hence, we discuss some

possible improvements which will be attempted in future work.



Chapter 5

Conclusion and Future Direction

The success of a pre-trained model to predict the average EMG power suggests that it is possible

to do better than re-training the forward model every day as part of our efforts to build a

deployable BCI for SCI patients. One way to do this is by creating models (using meta-learning)

with better model parameter initialisation.

The results in this thesis conclude that MAML and FOMAML do not perform at par with

pre-training when it comes to fine-tuning (or re-calibrating) the trained model using a smaller

number of trials. However, meta-learning seems like a promising approach as seen by the

improvement of model performance while using the Adaptation 2 fine-tuning set for a model

initialized using meta-learning. Although fine-tuning using this set led to over-fitting in the

pre-trained model, it does lead to better performance for the meta-learned model. This will be

further investigated.

Our results for the prediction of average EMG power need to be extended further to evaluate the

true potential of these methods for the end goal of this project. In the future, we are aiming to

build a forward model to directly predict the kinematics of motion elicited by the stimulations.

We aim to test these meta-learning algorithms for the kinematics prediction task as immediate

future work. It is to be noted that the algorithms examined in this thesis can be tested for any

type of forward model since they are model agnostic. MAML was one of the preliminary works

in the meta-learning literature and several improvements have been suggested since. One of the

reasons for the failure of MAML in this problem setting could be the large number of adaptation

steps (or gradient descent steps) required for this problem setting, since MAML optimization

deals with double derivatives. This problem has been deeply studied in the literature, and several

algorithms such as Reptile[25] have been proposed, which we are hopeful would yield better

results. The investigation of these meta-learning techniques is left as future work.

21
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